Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Viruses ; 16(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38675863

RESUMEN

One of the methods to inactivate viruses is to denature viral proteins using released ions. However, there have been no reports detailing the effects of changes in humidity or contamination with body fluids on the inactivation of viruses. This study investigated the effects of humidity changes and saliva contamination on the efficacy of SARS-CoV-2 inactivation with ions using multiple viral strains. Virus solutions with different infectious titers were dropped onto a circular nitrocellulose membrane and irradiated with ions from 10 cm above the membrane. After the irradiation of ions for 60, 90, and 120 min, changes in viral infectious titers were measured. The effect of ions on virus inactivation under different humidity conditions was also examined using virus solutions containing 90% mixtures of saliva collected from 10 people. A decrease in viral infectivity was observed over time for all strains, but ion irradiation further accelerated the decrease in viral infectivity. Ion irradiation can inactivate all viral strains, but at 80% humidity, the effect did not appear until 90 min after irradiation. The presence of saliva protected the virus from drying and maintained infectiousness for a longer period compared with no saliva. In particular, the Omicron strain retained its infectivity titer longer than the other strains. Ion irradiation demonstrated a consistent reduction in the number of infectious viruses when compared to the control across varying levels of humidity and irradiation periods. This underscores the notable effectiveness of irradiation, even when the reduction effect is as modest as 50%, thereby emphasizing its crucial role in mitigating the rapid dissemination of SARS-CoV-2.


Asunto(s)
COVID-19 , Humedad , SARS-CoV-2 , Saliva , Inactivación de Virus , SARS-CoV-2/efectos de la radiación , SARS-CoV-2/fisiología , Saliva/virología , Humanos , Inactivación de Virus/efectos de la radiación , COVID-19/virología , COVID-19/prevención & control , Iones , Animales , Células Vero , Chlorocebus aethiops
2.
J Hazard Mater ; 458: 131966, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37399721

RESUMEN

Pathogenic viruses (e.g., Enteroviruses, Noroviruses, Rotaviruses, and Adenovirus) present in wastewater, even at low concentrations, can cause serious waterborne diseases. Improving water treatment to enhance viral removal is of paramount significance, especially given the COVID-19 pandemic. This study incorporated microwave-enabled catalysis into membrane filtration and evaluated viral removal using a model bacteriophage (MS2) as a surrogate. Microwave irradiation effectively penetrated the PTFE membrane module and enabled surface oxidation reactions on the membrane-coated catalysts (i.e., BiFeO3), which thus elicited strong germicidal effects via local heating and radical formation as reported previously. A log removal of 2.6 was achieved for MS2 within a contact time as low as 20 s using 125-W microwave irradiation with the initial MS2 concentration of 105 PFU∙mL-1. By contrast, almost no inactivation could be achieved without microwave irradiation. COMSOL simulation indicates that the catalyst surface could be heated up to 305 oC with 125-W microwave irradiation for 20 s and also analyzed microwave penetration into catalyst or water film layers. This research provides new insights to the antiviral mechanisms of this microwave-enabled catalytic membrane filtration.


Asunto(s)
COVID-19 , Virus , Purificación del Agua , Humanos , Inactivación de Virus/efectos de la radiación , Microondas , Pandemias , Desinfección , Levivirus , Filtración
3.
PLoS One ; 18(5): e0274065, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37163509

RESUMEN

Downstream analysis of virus-infected cell samples, such as reverse transcription polymerase chain reaction (RT PCR) or mass spectrometry, often needs to be performed at lower biosafety levels than their actual cultivation, and thus the samples require inactivation before they can be transferred. Common inactivation methods involve chemical crosslinking with formaldehyde or denaturing samples with strong detergents, such as sodium dodecyl sulfate. However, these protocols destroy the protein quaternary structure and prevent the analysis of protein complexes, albeit through different chemical mechanisms. This often leads to studies being performed in over-expression or surrogate model systems. To address this problem, we generated a protocol that achieves the inactivation of infected cells through ultraviolet (UV) irradiation. UV irradiation damages viral genomes and crosslinks nucleic acids to proteins but leaves the overall structure of protein complexes mostly intact. Protein analysis can then be performed from intact cells without biosafety containment. While UV treatment protocols have been established to inactivate viral solutions, a protocol was missing to inactivate crude infected cell lysates, which heavily absorb light. In this work, we develop and validate a UV inactivation protocol for SARS-CoV-2, HSV-1, and HCMV-infected cells. A fluence of 10,000 mJ/cm2 with intermittent mixing was sufficient to completely inactivate infected cells, as demonstrated by the absence of viral replication even after three sequential passages of cells inoculated with the treated material. The herein described protocol should serve as a reference for inactivating cells infected with these or similar viruses and allow for the analysis of protein quaternary structure from bona fide infected cells.


Asunto(s)
COVID-19 , Herpesviridae , Humanos , SARS-CoV-2 , Replicación Viral , Inactivación de Virus/efectos de la radiación , Rayos Ultravioleta
4.
Photochem Photobiol ; 99(1): 101-105, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35578782

RESUMEN

The ongoing emergency provoked by the SARS-CoV-2 pandemic demands the development of technologies to mitigate the spread of infection, and UV irradiation is a technique that can efficiently address this issue. However, proper use of UV equipment for disinfection requires an understanding of how the effects on SARS-CoV-2 are dependent on certain parameters. In this work, we determined the UV-C inactivation constant k for SARS-CoV-2 using an LED source at λ = 280 nm. Specifically, a Log3 reduction was measured after irradiation for 24 min with a delivered UV-C dose of 23 J m-2 . By multitarget model fitting, n = 2 and k = 0.32 ± 0.02 m2 J-1 were obtained. A lag time for the inactivation effect was also observed, which was attributed to the low irradiation levels used to perform the study. The combination of k and delay time allows for reliable estimation of disinfection times in small, closed environments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Rayos Ultravioleta , Desinfección/métodos , Pandemias/prevención & control , Inactivación de Virus/efectos de la radiación
5.
BMC Microbiol ; 22(1): 300, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510144

RESUMEN

BACKGROUND: Although conventional polymerase chain reaction (PCR) methods are widely used in diagnosis, the titer of the pathogenic virus is difficult to determine based on the PCR. In our prior report, a long-range reverse-transcription quantitative PCR (LR-RT-qPCR) assay was developed to assess the titer of UV-irradiated influenza A virus (IAV) rapidly. In this research, we focused on whether the LR-RT-qPCR assay could evaluate the titer of IAV inactivated by other methods. METHODS: IAV was inactivated by: heating at 100 °C for periods ranging from 1 to 15 min, treating with 0.12% sodium hypochlorite for periods ranging from 3 to 30 min, or treating with 70% ethanol for periods ranging from 10 to 30 min. Fifty percent tissue culture infectious dose (TCID50) assay was performed to confirm the efficacy of the inactivation methods, followed by LR-RT-qPCR to investigate the correlation between infectivity and copy number. RESULTS: One minute heating, 3 min sodium hypochlorite treatment, or 10 min ethanol treatment was sufficient to deactivate IAV. Changes before and after the inactivations in the copy numbers on LR-RT-qPCR were significantly different among the inactivation methods. Heat-inactivation drastically decreased the copy number to below the cutoff value around 5 copies/µL after 5 min treatment. The inactivation time of heating estimated using LR-RT-qPCR was marginally higher than that determined using TCID50. However, the treatments with sodium hypochlorite or ethanol moderately and minimally affected the copy numbers obtained using LR-RT-qPCR (~ 1 digit or no copy number decrease), respectively. CONCLUSIONS: In addition to good applicability in UV-irradiation previously reported, the LR-RT-qPCR method is suitable for evaluating the effect of heat-inactivation on IAV infectivity. However, minor modifications may be made and investigated in the future to reduce the time intervals with TCID50. Although this method is not applicable for the ethanol inactivation, rapid evaluation of the effects of chlorination on IAV can be determined by comparing copy numbers before and after treatment using the LR-RT-qPCR method.


Asunto(s)
Virus de la Influenza A , Inactivación de Virus , Inactivación de Virus/efectos de la radiación , Hipoclorito de Sodio , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Reacción en Cadena de la Polimerasa , Virus de la Influenza A/genética , Etanol/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
6.
Sci Rep ; 12(1): 16664, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198702

RESUMEN

The spread of SARS-CoV-2 infections and the severity of the coronavirus disease of 2019 (COVID-19) pandemic have resulted in the rapid development of medications, vaccines, and countermeasures to reduce viral transmission. Although new treatment strategies for preventing SARS-CoV-2 infection are available, viral mutations remain a serious threat to the healthcare community. Hence, medical devices equipped with virus-eradication features are needed to prevent viral transmission. UV-LEDs are gaining popularity in the medical field, utilizing the most germicidal UVC spectrum, which acts through photoproduct formation. Herein, we developed a portable and rechargeable medical device that can disinfect SARS-CoV-2 in less than 10 s by 99.9%, lasting 6 h. Using this device, we investigated the antiviral effect of UVC-LED (275 nm) against SARS-CoV-2 as a function of irradiation distance and exposure time. Irradiation distance of 10-20 cm, < 10 s exposure time, and UV doses of > 10 mJ/cm2 were determined optimal for SARS-CoV-2 elimination (≥ 99.99% viral reduction). The UVC-LED systems have advantages such as fast-stabilizing intensity and insensitivity to temperature, and may contribute to developing medical devices capable of containing SARS-CoV-2 infection. By demonstrating SARS-CoV-2 inactivation with very short-term UVC-LED irradiation, our study may suggest guidelines for securing a safer medical environment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales , COVID-19/prevención & control , Desinfección/métodos , Humanos , Pandemias , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación
7.
J Virol Methods ; 309: 114610, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36064127

RESUMEN

Inactivation of human respiratory viruses in air and on surfaces is important to control their spread. Exposure to germicidal ultraviolet (UV-C) light damages viral nucleic acid rendering them non-infectious. Most of the recent viral inactivation studies have not considered potential artifacts caused by interactions between UV-C light and culture media used to suspend and deposit virus on surfaces. We show that the reactive oxygen and nitrogen species (ROS and RNS) form when commonly used virus culture media is exposed to 265 nm irradiation from light emitting diodes (LEDs) at UV-C doses (4 or 40 mJ/cm2) commonly considered to achieve multiple log-inactivation of virus. Surface viral inactivation values were enhanced from 0.49 to 2.92 log10 of viruses in DMEM, EMEM or EMEM-F as compared to absence of culture media (only suspended in Tris-buffer). The mechanisms responsible for the enhanced surface inactivate is hypothesized to involve photo-activation of vitamins and dyes present in the culture media, deposited with the virus on surfaces to be disinfected, which produce ROS and RNS. Given the rapidly growing research and commercial markets for UV-C disinfecting devices, there is a need to establish surface disinfecting protocols that avoid viral inactivation enhancement artifacts associated with selection and use of common cell culture media in the presence of UV-C light. This study addresses this weak link in the literature and highlights that inadequate selection of virus suspension media may cause a bias (i.e., over-estimation) for the UV-C dosages required for virus inactivation on surfaces.


Asunto(s)
Ácidos Nucleicos , Virus , Sesgo , Técnicas de Cultivo de Célula , Colorantes , Medios de Cultivo , Desinfección/métodos , Humanos , Nitrógeno , Oxígeno , Especies Reactivas de Oxígeno , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación , Vitaminas
8.
Artículo en Inglés | MEDLINE | ID: mdl-35886521

RESUMEN

Irradiation with ultraviolet light (UV) at 254 nm is effective in inactivating a wide range of human pathogens. In Sweden, a UV dose of 400 J/m2 is often used for the treatment of drinking water. To investigate its effect on virus inactivation, enteric viruses with different genomic organizations were irradiated with three UV doses (400, 600, and 1000 J/m2), after which their viability on cell cultures was examined. Adenovirus type 2 (double-stranded DNA), simian rotavirus 11 (double-stranded RNA), and echovirus 30 (single-stranded RNA) were suspended in tap water and pumped into a laboratory-scale Aquada 1 UV reactor. Echovirus 30 was reduced by 3.6-log10 by a UV dose of 400 J/m2. Simian rotavirus 11 and adenovirus type 2 were more UV resistant with only 1-log10 reduction at 400 J/m2 and needed 600 J/m2 for 2.9-log10 and 3.1-log10 reductions, respectively. There was no significant increase in the reduction of viral viability at higher UV doses, which may indicate the presence of UV-resistant viruses. These results show that higher UV doses than those usually used in Swedish drinking water treatment plants should be considered in combination with other barriers to disinfect the water when there is a risk of fecal contamination of the water.


Asunto(s)
Agua Potable , Enterovirus , Rotavirus , Purificación del Agua , Adenoviridae/genética , Desinfección/métodos , Humanos , Suecia , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación , Purificación del Agua/métodos
9.
J Photochem Photobiol B ; 233: 112503, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35779426

RESUMEN

Numerous studies have demonstrated that SARS-CoV-2 can be inactivated by ultraviolet (UV) radiation. However, there are few data available on the relative efficacy of different wavelengths of UV radiation and visible light, which complicates assessments of UV decontamination interventions. The present study evaluated the effects of monochromatic radiation at 16 wavelengths from 222 nm through 488 nm on SARS-CoV-2 in liquid aliquots and dried droplets of water and simulated saliva. The data were used to generate a set of action spectra which quantify the susceptibility of SARS-CoV-2 to genome damage and inactivation across the tested wavelengths. UVC wavelengths (≤280 nm) were most effective for inactivating SARS-CoV-2, although inactivation rates were dependent on sample type. Results from this study suggest that UV radiation can effectively inactivate SARS-CoV-2 in liquids and dried droplets, and provide a foundation for understanding the factors which affect the efficacy of different wavelengths in real-world settings.


Asunto(s)
COVID-19 , SARS-CoV-2 , Desinfección/métodos , Humanos , Luz , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación
10.
Sci Rep ; 12(1): 11935, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831374

RESUMEN

Ultraviolet (UV) irradiation-based methods used for viral inactivation have provided an important avenue targeting severe acute respiratory-syndrome coronavirus-2 (SARS-CoV-2) virus. A major problem with state-of-the-art UV inactivation technology is that it is based on UV lamps, which have limited efficiency, require high power, large doses, and long irradiation times. These drawbacks limit the use of UV lamps in air filtering systems and other applications. To address these limitations, herein we report on the fabrication of a device comprising a pulsed nanosecond 266 nm UV laser coupled to an integrating cavity (LIC) composed of a UV reflective material, polytetrafluoroethylene. Previous UV lamp inactivation cavities were based on polished walls with specular reflections, but the diffuse reflective UV ICs were not thoroughly explored for virus inactivation. Our results show that LIC device can inactivate several respiratory viruses including SARS-CoV-2, at ~ 1 ms effective irradiation time, with > 2 orders of magnitude higher efficiency compared to UV lamps. The demonstrated 3 orders of magnitude cavity enhancement relative to direct exposure is crucial for the development of efficient real-time UV air and water purification systems. To the best of our knowledge this is the first demonstration of LIC application for broad viral inactivation with high efficiency.


Asunto(s)
COVID-19 , Virus , Desinfección/métodos , Humanos , Rayos Láser , SARS-CoV-2 , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación
11.
Water Res ; 218: 118496, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35525030

RESUMEN

Adenoviruses are known to be one of the most resistant viruses to UV disinfection. This study determined the inactivation kinetics of adenovirus freshly isolated from sewage samples, and compared the results with reference adenovirus stocks grown in the laboratory. Human adenoviruses were isolated from sewage samples using the HEK 293 cell line. Inactivation kinetics for UV irradiation was determined for monochromatic low pressure (LP) mercury UV lamp (254 nm) and polychromatic medium pressure (MP) mercury UV lamp for each sewage isolate. Eleven (11) isolates were obtained from nine (9) different sewage samples with most isolates belonging to the enteric adenovirus group, specifically adenovirus 41. The average dose required for 4 log inactivation using LP UV lamps for sewage isolates (220 mJ/cm2) was not significantly different (p > 0.1) from the average dose reported for lab-grown enteric adenovirus (179.6 mJ/cm2). Interestingly, the average dose required for 4 log inactivation using MP UV lamps was significantly higher (p = 0.004) for sewage isolates (124 mJ/cm2) when compared to the average dose reported for laboratory stocks of adenovirus 40 and 41 (71 mJ/cm2). Viral capsid analysis using the propidium monoazide (PMA)-qPCR method showed that adenovirus isolates from group F were less affected by exposure to MP UV Lamps than adenoviruses from group D and C. Adenovirus isolates obtained from sewage samples showed greater resistance to UV irradiation compared to laboratory grown strains, although required doses for MP UV were still considerably lower than LP UV. These data suggest that the required fluence for inactivation of adenoviruses in real-world waters may be higher than previously understood.


Asunto(s)
Adenovirus Humanos , Mercurio , Adenoviridae , Desinfección/métodos , Células HEK293 , Humanos , Aguas del Alcantarillado , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación
12.
Sci Rep ; 12(1): 5869, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393480

RESUMEN

The ongoing COVID-19 global pandemic has necessitated evaluating various disinfection technologies for reducing viral transmission in public settings. Ultraviolet (UV) radiation can inactivate pathogens and viruses but more insight is needed into the performance of different UV wavelengths and their applications. We observed greater than a 3-log reduction of SARS-CoV-2 infectivity with a dose of 12.5 mJ/cm2 of 254 nm UV light when the viruses were suspended in PBS, while a dose of 25 mJ/cm2 was necessary to achieve a similar reduction when they were in an EMEM culture medium containing 2%(v/v) FBS, highlighting the critical effect of media in which the virus is suspended, given that SARS-CoV-2 is always aerosolized when airborne or deposited on a surface. It was found that SARS-CoV-2 susceptibility (a measure of the effectiveness of the UV light) in a buffer such as PBS was 4.4-fold greater than that in a cell culture medium. Furthermore, we discovered the attenuation of UVC disinfection by amino acids, vitamins, and niacinamide, highlighting the importance of determining UVC dosages under a condition close to aerosols that wrap the viruses. We developed a disinfection model to determine the effect of the environment on UVC effectiveness with three different wavelengths, 222 nm, 254 nm, and 265 nm. An inverse correlation between the liquid absorbance and the viral susceptibility was observed. We found that 222 nm light was most effective at reducing viral infectivity in low absorbing liquids such as PBS, whereas 265 nm light was most effective in high absorbing liquids such as cell culture medium. Viral susceptibility was further decreased in N95 masks with 222 nm light being the most effective. The safety of 222 nm was also studied. We detected changes to the mechanical properties of the stratum corneum of human skins when the 222 nm accumulative exposure exceeded 50 J/cm2.The findings highlight the need to evaluate each UV for a given application, as well as limiting the dose to the lowest dose necessary to avoid unnecessary exposure to the public.


Asunto(s)
COVID-19 , Virus , COVID-19/prevención & control , Desinfección , Humanos , SARS-CoV-2 , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación
13.
Compr Rev Food Sci Food Saf ; 21(2): 904-941, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35156303

RESUMEN

Food- and waterborne viruses, such as human norovirus, hepatitis A virus, hepatitis E virus, rotaviruses, astroviruses, adenoviruses, and enteroviruses, are major contributors to all foodborne illnesses. Their small size, structure, and ability to clump and attach to inanimate surfaces make viruses challenging to reduce or eliminate, especially in the presence of inorganic or organic soils. Besides traditional wet and dry methods of disinfection using chemicals and heat, emerging physical nonthermal decontamination techniques (irradiation, ultraviolet, pulsed light, high hydrostatic pressure, cold atmospheric plasma, and pulsed electric field), novel virucidal surfaces, and bioactive compounds are examined for their potential to inactivate viruses on the surfaces of foods or food contact surfaces (tools, equipment, hands, etc.). Every disinfection technique is discussed based on its efficiency against viruses, specific advantages and disadvantages, and limitations. Structure, genomic organization, and molecular biology of different virus strains are reviewed, as they are key in determining these techniques effectiveness in controlling all or specific foodborne viruses. Selecting suitable viral decontamination techniques requires that their antiviral mechanism of action and ability to reduce virus infectivity must be taken into consideration. Furthermore, details about critical treatments parameters essential to control foodborne viruses in a food production environment are discussed, as they are also determinative in defining best disinfection and hygiene practices preventing viral infection after consuming a food product.


Asunto(s)
Inocuidad de los Alimentos , Inactivación de Virus , Humanos , Inactivación de Virus/efectos de la radiación
14.
Virol J ; 19(1): 29, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35144624

RESUMEN

Ultraviolet (UV) light has previously been established as useful method of disinfection, with demonstrated efficacy to inactivate a broad range of microorganisms. The advent of ultraviolet light-emitting diodes provides advantages in ease of disinfection, in that there can be delivery of germicidal UV with the same light unit that delivers standard white light to illuminate a room. Herein we demonstrate the efficacy and feasibility of ultraviolet light-emitting diodes as a means of decontamination by inactivating two distinct virus models, human coronavirus 229E and human immunodeficiency virus. Importantly, the same dose of ultraviolet light that inactivated human viruses also elicited complete inactivation of ultraviolet-resistant bacterial spores (Bacillus pumilus), a gold standard for demonstrating ultraviolet-mediated disinfection. This work demonstrates that seconds of ultraviolet light-emitting diodes (UV-LED) exposure can inactivate viruses and bacteria, highlighting that UV-LED could be a useful and practical tool for broad sanitization of public spaces.


Asunto(s)
Coronavirus Humano 229E , Desinfección , VIH-1 , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación , Coronavirus Humano 229E/efectos de la radiación , Desinfección/métodos , VIH-1/efectos de la radiación , Humanos
15.
J Microbiol Immunol Infect ; 55(1): 166-169, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35094944

RESUMEN

This was a preliminary study on ultraviolet C (UVC) irradiation for SARS-CoV-2-contaminated hospital environments. Forty-eight locations were tested for SARS-CoV-2 using RT-PCR (33.3% contamination rate). After series dosages of 222-nm UVC irradiation, samples from the surfaces were negative at 15 s irradiation at 2 cm length (fluence: 81 mJ/cm2).


Asunto(s)
COVID-19 , SARS-CoV-2 , Desinfección , Humanos , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación
16.
ACS Appl Mater Interfaces ; 14(4): 4892-4898, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35040619

RESUMEN

This paper presents results of a study of a new cationic oligomer that contains end groups and a chromophore affording inactivation of SARS-CoV-2 by visible light irradiation in solution or as a solid coating on paper wipes and glass fiber filtration substrates. A key finding of this study is that the cationic oligomer with a central thiophene ring and imidazolium charged groups gives outstanding performance in both the killing of E. coli bacterial cells and inactivation of the virus at very short times. Our introduction of cationic N-methyl imidazolium groups enhances the light activation process for both E. coli and SARS-CoV-2 but dampens the killing of the bacteria and eliminates the inactivation of the virus in the dark. For the studies with this oligomer in solution at a concentration of 1 µg/mL and E. coli, we obtain 3 log killing of the bacteria with 10 min of irradiation with LuzChem cool white lights (mimicking indoor illumination). With the oligomer in solution at a concentration of 10 µg/mL, we observe 4 log inactivation (99.99%) in 5 min of irradiation and total inactivation after 10 min. The oligomer is quite active against E. coli on oligomer-coated paper wipes and glass fiber filter supports. The SARS-CoV-2 is also inactivated by oligomer-coated glass fiber filter papers. This study indicates that these oligomer-coated materials may be very useful as wipes and filtration materials.


Asunto(s)
Antivirales/farmacología , COVID-19/terapia , SARS-CoV-2/efectos de la radiación , COVID-19/genética , COVID-19/virología , Cationes/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Humanos , Luz , Fototerapia , SARS-CoV-2/patogenicidad , Rayos Ultravioleta , Inactivación de Virus/efectos de los fármacos , Inactivación de Virus/efectos de la radiación
17.
Transl Res ; 240: 64-86, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34757194

RESUMEN

Oncolytic virotherapy is a new and safe therapeutic strategy for cancer treatment. In our previous study, a new type of oncolytic herpes simplex virus type 2 (oHSV2) was constructed. Following the completion of a preclinical study, oHSV2 has now entered into clinical trials for the treatment of melanoma and other solid tumors (NCT03866525). Oncolytic viruses (OVs) are generally able to directly destroy tumor cells and stimulate the immune system to fight tumors. Natural killer (NK) cells are important components of the innate immune system and critical players against tumor cells. But the detailed interactions between oncolytic viruses and NK cells and these interaction effects on the antitumor immune response remain to be elucidated. In particular, the functions of activating surface receptors and checkpoint inhibitors on oHSV2-treated NK cells and tumor cells are still unknown. In this study, we found that UV-oHSV2 potently activates human peripheral blood mononuclear cells, leading to increased antitumor activity in vitro and in vivo. Further investigation indicated that UV-oHSV2-stimulated NK cells release IFN-γ via Toll-like receptor 2 (TLR2)/NF-κB signaling pathway and exert antitumor activity via TLR2. We found for the first time that the expression of a pair of checkpoint molecules, NKG2A (on NK cells) and HLA-E (on tumor cells), is upregulated by UV-oHSV2 stimulation. Anti-NKG2A and anti-HLA-E treatment could further enhance the antitumor effects of UV-oHSV2-stimulated NK92 cells in vitro and in vivo. As our oHSV2 clinical trial is ongoing, we expect that the combination therapy of oncolytic virus oHSV2 and anti-NKG2A/anti-HLA-E antibodies may have synergistic antitumor effects in our future clinical trials.


Asunto(s)
Herpesvirus Humano 2/efectos de la radiación , Inhibidores de Puntos de Control Inmunológico/farmacología , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Virus Oncolíticos/efectos de la radiación , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación , Animales , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Citotoxicidad Inmunológica/efectos de los fármacos , Femenino , Herpesvirus Humano 2/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Interferón gamma/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , FN-kappa B/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Virus Oncolíticos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/metabolismo , Inactivación de Virus/efectos de los fármacos , Antígenos HLA-E
18.
J Infect Dis ; 225(4): 587-592, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34904659

RESUMEN

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since 2019 has made mask-wearing, physical distancing, hygiene, and disinfection complementary measures to control virus transmission. Especially for health facilities, we evaluated the efficacy of an UV-C autonomous robot to inactivate SARS-CoV-2 desiccated on potentially contaminated surfaces. ASSUM (autonomous sanitary sterilization ultraviolet machine) robot was used in an experimental box simulating a hospital intensive care unit room. Desiccated SARS-CoV-2 samples were exposed to UV-C in 2 independent runs of 5, 12, and 20 minutes. Residual virus was eluted from surfaces and viral titration was carried out in Vero E6 cells. ASSUM inactivated SARS-CoV-2 by ≥ 99.91% to ≥ 99.99% titer reduction with 12 minutes or longer of UV-C exposure and onwards and a minimum distance of 100cm between the device and the SARS-CoV-2 desiccated samples. This study demonstrates that ASSUM UV-C device is able to inactivate SARS-CoV-2 within a few minutes.


Asunto(s)
COVID-19 , Robótica , SARS-CoV-2/efectos de la radiación , Esterilización/métodos , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación , COVID-19/prevención & control , Hospitales , Humanos
19.
Photochem Photobiol ; 98(2): 471-483, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34599612

RESUMEN

It has been demonstrated in laboratory environments that ultraviolet-C (UVC) light is effective at inactivating airborne viruses. However, due to multiple parameters, it cannot be assumed that the air inside a room will be efficiently disinfected by commercial germicidal ultraviolet (GUV) systems. This research utilizes numerical simulations of airflow, viral spread, inactivation by UVC and removal by mechanical ventilation in a typical classroom. The viral load in the classroom is compared for conventional upper-room GUV and the emerging "Far-UVC." In our simulated environment, GUV is shown to be effective in both well and poorly ventilated rooms, with greatest benefit in the latter. At current exposure limits, 18 commercial Far-UVC systems were as effective at reducing viral load as a single upper-room GUV. Improvements in Far-UVC irradiation distribution and recently proposed increases to exposure limits would dramatically increase the efficacy of Far-UVC devices. Modifications to current Far-UVC devices, which would improve their real-world efficacy, could be implemented now without requiring legislative change. The prospect of increased safety limits coupled with our suggested technological modifications could usher in a new era of safe and rapid whole room air disinfection in occupied indoor spaces.


Asunto(s)
COVID-19 , COVID-19/prevención & control , Desinfección/métodos , Humanos , SARS-CoV-2 , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación
20.
Viruses ; 15(1)2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36680083

RESUMEN

Viral pathogens with the potential to cause widespread disruption to human health and society continue to emerge or re-emerge around the world. Research on such viruses often involves high biocontainment laboratories (BSL3 or BSL4), but the development of diagnostics, vaccines and therapeutics often uses assays that are best performed at lower biocontainment. Reliable inactivation is necessary to allow removal of materials to these spaces and to ensure personnel safety. Here, we validate the use of gamma irradiation to inactivate culture supernatants and pellets of cells infected with a representative member of the Filovirus and Coronavirus families. We show that supernatants and cell pellets containing SARS-CoV-2 are readily inactivated with 1.9 MRad, while Ebola virus requires higher doses of 2.6 MRad for supernatants and 3.8 MRad for pellets. While these doses of radiation inactivate viruses, proinflammatory cytokines that are common markers of virus infection are still detected with low losses. The doses required for virus inactivation of supernatants are in line with previously reported values, but the inactivation of cell pellets has not been previously reported and enables new approaches for analysis of protein-based host responses to infection.


Asunto(s)
COVID-19 , Ebolavirus , Fiebre Hemorrágica Ebola , Virus , Humanos , SARS-CoV-2 , Inactivación de Virus/efectos de la radiación , Técnicas de Cultivo de Célula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...